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Simplified Interface to Complex Memory (SICM) Overview

Allocate
Deallocate

Migrate
Arbitrate 

&
Introspect 
Memory 

in a 
portable 
manner

LANL – low-level interface
Terry Jones ORNL & Michael Jantz UTK  a high-level interface via active profiling for data placement
Maya Gokhale LLNL higher-level Graph App interface
Ada Gavriloska GaTech a high-level interface, app characterization, ML approach
Frank Mueller NC State a high-level interface using static analysis in the LLVM layer
Si Hammond simulation of hierarchies in SST
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Overall approach & preparation for exascale platforms. 

• Describe your overall approach followed by specific activities in preparation for exascale platforms. 
– Provide abstraction for Heterogenous memory for runtimes and applications

• focusing on arenas for data structures that are used together

• Trying for inclusion in existing open source projects rather than starting a new one (CLANG, OpenMP, hwloc, Umpire, Jemalloc …)

– Pre-exascale environments you are using.
• Sierra/Summit nodes P9+Volta, 

• Intel CascadeLake + Optane, 

• Intel KNL with MCDRAM, 

• Intel w/ GPU, AMD w/ GPU -- Builds in the Aurora environment. (last week)

– Only supporting unified memory architectures
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Overall approach & preparation for exascale platforms. 

• Describe your overall approach followed by specific activities in preparation for exascale platforms. 
– Include status and any results from pre-exascale environments (GPU porting, use of Summit) that illustrate your strategy.

• Kripkie evaluation with Umpire and SICM on KNL, Sierra

• Memsys paper on performance of apps/miniapps with SICM/Optane. VPIC showed approximately equal performance DRAM to Optane.

– Include discussion of your major performance challenges.
• Slow move pages on Linux kernel – (collaboration with RIKEN), working on FY20
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Status of integration efforts

• Describe your overall approach and describe the status of your client integration efforts.
– Include a description of your overall strategy for your L4 project.

• OpenMP/CLANG/LLVM, Pull request is being updated to latest version.

• Umpire, Pull request is there. Need to coordinate with Beckensale.

• Hwloc -- need to push back the memory identification for numa nodes back to maintainer

– Include specific client interactions that illustrate your strategy.
• Umpire and OpenMP, previously Global Arrays ( they have integrated our low-level allocator)

– Include recent integration progress.
• Umpire and OpenMP/CLANG

– Include discussion of your major integration challenges.
• Just being included in the runtime isn’t enough to impact applications. Applications have to use the heterogenous memory in a way that 

increases performance. Project needs to help a few apps make use of heterogenous memory and help reason about the tradeoffs. The
work in the high-level interface will inform this and is also an opportunity for an application or two to try the semi-automated interface.
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PMR projects only: Specific questions to address

• Perlmutter, Aurora and Frontier represent very different node programming environments. As 
appropriate, how is your project addressing this challenge, including node performance, 
performance portability, performance of MPI+X and preparation for further heterogeneity?
– Support of heterogenous memory as a discoverable NUMA node seems like a low bar for vendors to 

support.
– Performance is more hand-tuned if the low-level interface is used. The high level-interface is working on 

automatically identifying data objects to move to higher performance memories.

• What is the path for your capabilities to realize sustainability in the software ecosystem?
– Pull requests to existing opensource projects. At most have to maintain a thin wrapper for SICM.

• Hwloc for memory discovery
• Jemalloc for some sicm allocation features
• Umpire for a higher level interface
• OpenMP/CLANG/LLVM code generation
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PMR projects only: Specific questions to address

• How is your work impacting vendor capabilities?
– Aurora: Talking to Jeff Hammond, on strategies for Aurora.
– Perlmutter: probably will not work do to lack of unified memory on the accelerators
– Frontier: Need more detailed hardware information – Signed up for staff for a programming workshop and 

will rely on Terry and the ORNL folks. 
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SICM low-level: Umpire + SICM Integration

• HOST and CUDA allocators implementations replaced with SICM calls
– Devices are selected automatically

• Custom SICM operations for copy, move, memset, and realloc
– SICM move actually moves instead of allocating new memory and copying the data

• SICM Strategy allows for explicit device selection

• Enable with CMake flags

• Benchmarks with LLNL/Kripke
– Better than Umpire-only
– Worse than Umpire+CUDA
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Overall approach & preparation for exascale platforms. 



11

Scope and objectives
• Testing of 3dxpoint which is expected on A21 
• Rework of build system to use Cmake and Space and 

Travis for continuous integration.
• To get experience on A21 hardware and to realign build 

system with ECP common practices.

Project accomplishment
• Availability of 3Dxpoint lifted the priority of this milestone.

Impact
• Experience with 3dxpoint will allow support by SICM 

library.
• Rework of build system will allow easier integration into 

ECP SDK.  Cmake and Spack.

Cool image
Intel 3Dxpoint allows Non-
Volatile memory to be 
mapped into traditional 
DRAM space allowing much 
high memory capacity for 
applications but at a lower 
performance.

SICM low-level: SICM initial investigation of 
Intel’s 3DXpoint & update of SICM build system

ECP WBS 2.3.1.16 SICM
PI Michael Lang, LANL

Members LLNL, ORNL, SNL
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SICM low-level: Added SICM support for Intel Optane

• Gained Experience with Intel’s Optane DC PMM which is on Aurora.

• Used kernel modification to use Optane in unsupported way 
– Can also use a kernel parameter.

• Memsys 2019 - Performance characterization of a DRAM-NVM hybrid memory architecture for 
HPC applications using Intel Optane DC Persistent Memory Modules
– Ran many different HPC applications using Optane
– Compared runs in Memory Mode and Hybrid Mode

• HPDC - Using Non-Volatile Memory in High Performance Computing to Shrink the Size of 
Clusters
– Showed that the size of Optane allows for applications running on a single node to have comparable 

performance to multimode runs
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Optane Performance Evaluation

•HPC Applications and mini-apps
– AMG, LULESH, VPIC and SNAP
– Comparing DRAM-only (Flat mode), Optane-only (Flat mode) and Memory 

mode
– Small to medium problem size
– Strong and Weak scaling using MPI

• Execution time & bandwidth
• Execution time & Energy
• L3 cache miss ratio & Cycles/Instructions

– Used LIKWID to collect the statistics
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SICM low-level: Heterogenous Memory Identification

NUMA Node Characterization

• Small C program 

• Runs a few kernels to get timings for different access patterns

• Clusters results by NUMA node
– K-Means

• Assigns type according to characteristics of cluster

• Takes 1-30 seconds (slower on Optane), depending on memory types being benchmarked
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SICM low-level: Generate SICM call from OpenMP Pragmas

Patches to Clang to turn OpenMP memory spaces in OpenMP 5.x into sicm library calls in the 
LLVM/OpenMP runtime.

Supports Compile SICM runtime with CLANG/LLVM 

At init time it does DLOpen to find SICM library, if found it it uses SICM to satisfy the 

pragma openmp allocate 

OpenMP memory types: omp_ (default, large_cap, const, high_bw, low_lat ) _mem_spaces

Currently supports KNL, Optane, testing Sierra

Same codepath that supports memkind library, refactored to support multiple custom memory 
allocators – more general than SICM support.
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SICM High-level: Portable Application Guidance for Complex Memory 
Systems (MemSys ‘19)

Application Guided Data Tiering in SICM Evaluation

Performance with Different Upper Tier Capacities

• Extended SICM high-level interface with application-directed data 
tiering based on the MemBrain approach (Olson et al., 2018)

• Experiments on two real heterogeneous memory platforms:
• KNL with 16 GB of high-bandwidth MCDRAM, 96 GB of DDR
• CLX with 192 GB of DDR, 512 GB of non-volatile AEP

• Workloads from CORAL benchmark suite
• LULESH, SNAP, AMG, and QMCPACK
• Tested multiple inputs of each ranging from SMALL (requires only a few GB of 

data and only a few minutes of run time) to LARGE or HUGE (requires almost 
all memory capacity and several hours of run time)

• Comparison configurations
• First touch: unguided software-based tiering
• Cache mode: hardware manages upper tier as a large memory-side cache

• Guided approach is more 
effective than unguided first 
touch regardless of the 
upper tier capacity

• Benefits are more 
pronounced for 
configurations with more 
upper tier capacity

• Guidance is more important 
on CLX due to limited 
bandwidth of lower tier

Application 
source code

Annotated
executable

Memory usage
statistics

Program 
input

Program 
execution

Compile
with site 

annotations

MemBrain
runtime

Annotated
executable

Architectural
profiling Site → tier

guidance

Bin-packing /
sorting 

heuristics

Hybrid memory hardware

Program 
input

Program 
execution

MemBrain
runtime

Annotated
executable

Guided data
placement

Hybrid memory hardware

Memory 
usage

statistics

Site → tier
guidance

(a) (b) (c) (d)

Performance with Different Program Inputs
• Profiles of small program 

inputs are often effective 
for guiding execution with 
larger inputs

• Guided execution in SICM 
outperforms default first 
touch and cache mode by 
up to 22x and 7.8x, 
respectively 
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SICM high-level: Evaluating the Effectiveness of Program Data Features 
for Guiding Memory Management (MemSys ‘19)

Program Data Features for Guiding Memory Mgmt Case Study: Guided Data Tiering

Full Program Simulations of Object Usage Behavior

• SICM may employ program profiling and analysis to direct data 
management across complex memory hierarchy

• Naïve strategies for collecting and using memory management 
guidance are ineffective due to large number of addresses and 
accesses generated by most applications

• Potential solution: associate profiles of memory usage with program 
data features (e.g., object sizes, types, allocation instructions, etc.)

• Problem: which data features are most effective for guiding 
complex memory management?
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• Modeled impact of using different data features to steer hot program data into 
capacity-constrained device tier

• For each feature category, classify objects associated with different features 
into different feature sets

• Plots show cumulative bandwidth and capacity of data associated with hottest 
feature sets from left to right

• Conclusions
• Even simple program features (e.g., object size) are often effective when 

profiled and guided execution use same input.
• Allocation sites are still effective when profiled and guided execution use 

different inputs

• Simulated memory usage 
of individual data objects, 
including capacity, 
bandwidth, cache 
utilization, and lifetime

• Associated and 
aggregated usage 
information for each 
allocated object with 
program data features

Feature Distinguishes objects …

application in the same application

size allocated with exactly the same size

size bucket allocated with similar, but not  
necessarily identical sizes

type with the same data type

allocation phase allocated during the same phase

phase signature alive during the same set of phases

access signature accessed by the same set of instructions

allocation site allocated from the same instruction

allocation context Allocated from the same calling context
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SICM LLNL task: Metall, Meta Allocator for persistent memory
Overview

• Enable applications to allocate data including custom C++ data structures in persistent memory (PM)

• Provides rich C++ API developed by Boost libraries to increase usability

• Works on both conventional block-storage and emerging byte-addressable PMs for portability

• Incorporates state-of-the-art allocation algorithms to scale to exascale

• Provides space-efficient ("diff" based) persistent memory snapshotting (versioning) capabilities to handle exascale data

Potential use cases
class my_class {int n;}

{
metall::manager mgr(metall::create_only, "/ssd");
auto pdata = mgr.construct<my_class>("data")();
pdata->n = 10;

}

// -- Exit the program and reattach the data -- //

{
metall::manager mgr(metall::open_only, "/ssd");
auto pdata = mgr.find<my_class>("data").first;
pdata->n += 20; // Can update data

}

Example: allocating a custom data structure with Metall

.

.

.
App ...

Snapshots/versioning
Persistent in-memory

data store

Producer & consumer
(exchange data over file system)

App1 App2

App

Backing file(s)

Allocator

AppDRAM

PM
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Metall : Meta allocator for persistent memory

• Graph construction (write intensive) benchmark (primary evaluation for collaboration with EXAGRAPH)

• Conventional
PCIe NVMe SSD

• Varied data structures
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• Client integration progress
– Metall runs on commodity Linux systems and requires only Boost libraries

• XFS, ZFS, or Btrfs filesystem is necessary for space-efficient snapshotting
– Potential collaboration

– EXAGRAPH Collaborating to store graph data as well as other intermediate data into PM leveraging Metall.
– EXAALT Investigating a collaboration opportunity. Passed an initial unit test to store its management data.
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• Intel Optane DC 
Persistent Memory

• Varied memory modes

Metall enables applications to process exascale data
in a variety of conditions (PM technologies and custom data structures) 

with straightforward modifications
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To be installed in Aurora


